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Problem Motivation and Background
Damascus, AR accident (1980)

▪ Maintenance worker in 
missile silo dropped a tool 
approx. 80’ struck the fuel 
tank

▪ Fuel exploded launching 
740-ton door and warhead 
into surrounding area

▪ Warhead did not detonate

▪ 1 dead, 21 injured, facility 
destroyed
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[Online]. 

Org. 9432 Weapon Analysis Mission:

“Provide customers with performance, risk, and
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Project Overview
Analyze puncture failure of 7075-T651 plate from steel probes

▪ Simulate and predict tooling damage

Compare different descriptions of material response

▪ Constitutive laws

▪ Failure criteria

Sandia Fracture Challenge

▪ Minimal experimental data,
characterization provided
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P. Figari, "Steps to Analyzing a Material's Properties from its Stress/Strain Curve," Instructables, 5 February 2015. [Online]. 

Available: https://www.instructables.com/id/Steps-to-Analyzing-a-Materials-Properties-from-its/. [Accessed 26 July 2018].



Experiment Description

Steel probes dropped from 
various heights onto aluminum 
coupon

Aluminum coupon primarily 
constrained to movement 
normal to impact

Energy absorption of the plate 
determined by ΔKE of the probe
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Experiment Description

Several different phenomena

▪ Complex loading state (biaxial 
tension, bending)

▪ Wide range of strain rates

▪ Fracture, spallation

▪ Contact mechanics
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Constitutive Laws vs. Failure Criteria

Constitutive models define material behavior (hardening, 
viscoplasticity, damage, etc.)

▪ Multilinear Elastic-Plastic (MLEP)

▪ Johnson-Cook (JC)

Failure criteria define the limits from when the stress is reduced 
to zero (failed)

▪ Failure Strain

▪ Failure Stress

▪ Strain Energy Density

▪ Wellman Tearing Parameter

▪ Johnson-Cook Damage Criterion
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Review: MLEP Model

Rate-independent, temperature-dependent plasticity model

Piecewise linear hardening curve created from uniaxial stress vs. 
plastic strain curve from experimental data

Yield surface defined according to Von Mises

Does not inherently incorporate damage or failure

9[1] Department of Defense, MIL-HDBK-5J, “Metallic Materials and Elements for Aerospace Vehicle Structures,” 31 January 2003.
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Review: JC Model [2,3]

Rate- and temperature-dependent constitutive law most 
commonly used and accepted in practice for large strains and 
strain rates
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Review: Wellman Tearing Parameter [4]

Proposed by Wellman (Sandian!) in 2013

▪ Goal to make energy dissipation scale with element size, 
eliminate mesh dependency of crack growth

Phenomenological failure term to homogenize void nucleation 
and growth

Once 𝑡𝑝 = 𝑡𝑐𝑟𝑖𝑡, stress reduces 

to zero linearly until 𝜀 = 𝜀CCOS
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Capturing Elastic Waves: Time Step

Elastic wave response must be captured by elements

▪ Co-dependent temporal and spatial sampling

Time-step: Every node observes every wave

Waves cannot move further than characteristic element length

Sierra will automatically maintain a max allowable time step

▪ Based on element length, 
stiffness, and mass density
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Capturing Elastic Waves: Element Size

Element Size: At least one element per wave

▪ Often ne = 6 – 20 [5]

Modal analysis reveals: f0 = 2.5 kHz

Maximum element size vs. plate geometry

▪ Plate thickness is 1.65 mm

▪ Mesh size controlled by material response (convergence study)
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Objectivity in Fracture

When material fails/cracks, two new surfaces are created

▪ Free surface creation requires some energy, Es

This failure is modeled by some metric (stress, strain, etc.)

▪ An element reaches some critical value, and “erodes”

Larger surfaces should require more energy to create

▪ Larger elements should require more energy to erode
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𝑎 𝐸𝑠: Fracture energy 
𝛾𝑠: Free surface energy density
𝑎: Crack length and width
𝐹𝑢: Ultimate force
𝑢CTOD: Crack tip opening disp.



Objectivity in Fracture

Solving for displacements, strains required for erosion

Inputting death steps into Sierra

▪ Calculate erosion time from average strain rates (101 – 102)

▪ Solve for death steps using time-step size

Smaller elements increase erosion time, and decrease time steps

▪ Death steps increase exponentially as element size is reduced
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𝑡𝑒𝑟𝑜𝑠𝑖𝑜𝑛: erosion duration
𝑠𝑑: number of death steps
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Mesh Refinement

Meshes are typically refined spatially

▪ However, our erosion criterion assumes consistent element 
sizing

Mesh convergence

▪ 9 elements through the 
thickness captures 
material response
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Model Description

Sierra/Solid Mechanics Presto 
(Explicit) Analysis

Notes about Geometry

▪ 9 elements through thickness

▪ ≈ 1.1 million elements

Initial and boundary conditions

▪ Initial probe velocity varies 
0.54-0.99 m/s

▪ Plate restrained by contact 
force and friction with Table

▪ Table fully fixed
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Flat Probe Simulations
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Corner Probe Simulation
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(3): Probe continues to slow down from 

scraping along 

tear-out

Kinetic Energy of Probe

Assume that energy from probe is 100% absorbed by plate

▪ Matches experimental assumptions
20
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Experimental data

[Work hardening], [Failure Criterion]:



Differences in Material Description

Parameters are subjective

▪ Corona and Brar found uniaxial 
material response to vary by ~25%
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Failure Geometry – 0.25in, Flat
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▪ Highly localized 
deformation

▪ Plug formation

▪ Spallation 

*JC, SED 

Simulation



Failure Geometry – 1.00in, Flat
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▪ Shear failure on 
leading edge

▪ Crack deviation 
from probe

▪ “Can-opening”

*JC, SED

Simulation

Energy may agree, but 

geometry may not…
*JC, Wellman

Simulation



Failure Geometry – 1.00in, Corner
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▪ “Petal” formation

▪ Tearing vs. shearing 

*Spiraling “petals” assumed to

be influenced by mill pattern

used to create coupon

*JC, Stress

Simulation



Conclusions and Next Steps

Failure criterion determines energy absorption

▪ Differences in elastic/plastic response are negligible

Parameterization of failure is subjective

▪ Based on mesh density

▪ Johnson-Cook damage terms stand to be reconsidered

Fracture is mesh dependent

▪ Once crack begins, difficult to change direction

▪ Perhaps consider different discretization techniques
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